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TWO-DIMENSIONAL INVERSE PROBLEM OF NONLINEAR 

ELASTICITY THEORY FOR A HARMONIC MATERIAL 

L. G. Dobordzhginidze UDC 539.3 

For a material of harmonic type [i] we consider a two-dimensional inverse problem of 
nonlinear elasticity theory concerned with the determination of the contour of a hole having 
uniform strength. This problem was solved in [2] in the linear classical case. 

i. Let us assume that the nonlinearly elastic medium under consideration here occupies 
the plane of the variable z = x + iy, weakened by a curvilinear hole. We assume also that 
constant normal stresses are applied to the contour L of this hole [3]: 

an : P0,. Tn = O, (I.i) 

and that there is a biaxial tension along the coordinate axes at infinity: 

0 2 )  = P1, o(y~) = P=. ( 1 . 2  ) 

S u b j e c t  t o  t h e s e  c o n d i t i o n s ,  we w i s h  t o  f i n d  t h e  s h a p e  and  l o c a t i o n  o f  t h e  c o n t o u r  L so  t h a t  
the tangential stress ~t will be constant at all of its points: 

as = a (1.3) 

(o is constant but unknown). 

To solve the problem we make use of complex representations for the stress and deforma- 
tion fields in terms of functions ~(z) and ~(z), analytic in the physical domain S under 
consideration (see [4, 5]): 

~+ 2~ ~.. 
c;x -{- • -}- 4~, = - Y 7  q~g(q)' (1.4) 

% -- ~x -- 2i~v = -- 4 (~ +-__32! n (__q2 a~__* o2! . 
VI q a~ ~ '  

(1.5) 

(A,  ~ a r e  t h e  Lame e l a s t i c  c o n s t a n t s ) .  F o r  l a r g e  l z l  t h e s e  f u n c t i o n s  h a v e  t h e  a s y m p t o t i c s  

qg(Z) = aoZ ~- O(Z-1), I~(Z) = boz ~- O(z -1) ( 1 . 7 )  

(ao~ and  b o a r e  known c o n s t a n t s  [ 6 ] ) ;  

[~+~ 2~(P'+P2)+PIP2+4~" ] I12, (1 8)  
a~ = -6 z (P~ + P2) -- P~P~ + 4~ (~ + ~) 

b~ = 2~ (P, + P2) -- PIPs -~- 4~(I ~- ~)" 
Comparing the relations (1.4), we obtain the equation 

aT* _ ~ - % - -  2 ~  a~* ( 1 9 ) 
Oz % -{- % -}- 4~ az " 

using this, we have, based on relations (1.4)-(1.6), after some calculations, 
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4~(x+2P)[~ '=(=)l �9 ( 1 . 10 )  

A = (% -- %)2 + 4~u ( 1.11 ) 
(% + % + 4~) ~ 

2. We map the physical domain S under consideration conformally and biuniquely by 
means of the function 

= ~(~) (~(~) = ~ + o(~ -a) fo~ ~=go I~l) ( 2 . 1 )  

onto the exterior of the unit disk [~[ > 1 in the plane of the auxiliary variable ~ = ~ + 
iq; we retain the previous notation for the quantities considered in the transformed domain. 
Further, we shall use the relations [3] 

9P § ~ = ~x § %, 00 - -  pp § 2 i ~  = (% - -  ~x § 2i~x~) e2i~. ( 2 . 2 )  

Then from relations (i.I), (1.3), (i.i0), (i.ii), (2.1), and (2.2) we obtain the following, 
valid on the unit circle I~[ = i, which we denote by 7: 

i ~,z (a) (X @ ~) (P0 + 2~) (o + 2~) = h~ 7. ( 2 . 3 )  
o n  

From the boundary condition (2.3) we obtain, upon taking relations (1.7) and (2.1) into 
account, after obvious arguments, 

~'(~) = ho~'(~ ) ( 2 . 4 )  

everywhere in the domain [~[ > i. 

Comparing equation (2.4) with the first of the relations (1.7), we have 

a 0 = ho, " ( 2 . 5 )  

which, based on equations (1.8), 
the form 

yields a relationship between the stresses in question in 

(y = 4~2 (Pl  "@ P2) "~- (PO -~- 4It) PlPg, - -  4['1'2/~ �9 ( 2 . 6 )  

We return now to the last relation (1.4) and in it take into account relations (1.5), 
(2.2), and (2.4). Then 

~'(o) = AoT~{oT) ,on y{ ( 2 . 7 )  

where A 0 is a constant given by the expression 

{x + 2~) (e~ + P2 + 4~)~ (Po - ~) {~ + 2~) (eo + 2~) ( 2 . 8 )  
A~ = (~ + P0+4~) ~ IX (Pl+P~) --plP~+4~ {x+~)l [2~ (P~+P~) +P~P~+4~]" 

Next, we introduce the notation: 

Ao-'/ '  I ~ ( 2 ; 9 )  F -  (~) = ~'  (~), F + (~) = ~- ,~ ~,T}" 

Here F+(~) is a function holomorphic in the disk [~[ < i, except for the point ~ = 0, where 
it has a second-order pole, while F-(~) is holomorphic in the domain I~[ > i and is a 
bounded function at ~ = =. Then 

F+(~) = F-(,~) on ?. ( 2 . 10 )  

We obtain from this, using a well-known theorem of Liouville [3] and the relations (1.7) 
and (2.1), a single function F(~), holomorphic in the extended plane ~ = $ + in (with the 
exception of the point ~ = 0), in the form 

F(g) = boR + AoR/~ ~. ( 2 . 1 1 )  

Now, on the basis of relations (2.10) and (2.11), we obtain a solution of problem (2.7): 

( ra) ~p'(r~)=A t--ra~ 2. ( 2 . 12 )  
, ~ (~ )=R ~+T ~ 0 ~_~, 

ra ---- --bo/Ao. ( 2 . 1 3 )  

On t h e  r i g h t  s i d e  o f  e q u a t i o n  (2 .1 3 )  we i n s e r t  t h e  v a l u e s  o f  o,  .g iven  by e q u a t i o n  ( 2 . 6 ) :  
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TABLE I 

, p~l~ Ptl~ 

0 0,2 0,~ 

0,2 

0,4 

0,6 

0 
0 

1,15 
0,88 
t,17 
0,87 

t , i5  
0,88 

o o 

1,31 
0,81 

0,6 0,8 

t , t7 1,19 
0,87 0,86 
1,31 1,35 
0,8i 0,75 

0 t ,5i 
0 0,74 

Consequently, 
ellipses with eccentricity m given by equation (2.14). 

According to the linear classical theory, we have the relation 

m =  (P~--P=)/(P~q-P2--2Po)~ 

for the eccentricity and o = P~ + P2 - P0 for the constant o t on L. 

Table 1 gives values of the ratio m=/m~ for various values of Pi/~, 

R 
f 

o,2- / ~  

o o,4 o,8 r ~e x/n 

Fig. i 

(Pt - -  P2) (2p -t- Po) ( 2 . 1 4 )  

the desired hole contours of equal strength constitute a set of similar 

( 2 . 1 5 )  

(i = I, 2), at 
first in the biaxial tension field and then in the biaxial compressive field; m I and m 2 are 
the eccentricities corresponding to the linear (relation (2.15)) and nonlinear (relation 
(2.14)) theories, respectively. 

As is evident from Table I, in the case of a biaxial tension the eccentricity of the 
desired ellipses of equal strength increases, while in the case of compressive stresses a 
decrease in this geometric characteristic is observed when compared with the linear classical 
case. Hence, in the latter case, the form of the ellipse in the nonlinear theory is closer 
to a circle than in the linear classical theory. This fact is of great practical signifi- 
cance. 

After determining ~(~), ~'(~), and ~'(~), we obtain the functions ~(r ~(~) from re- 
lations (2.4) and (2.12) in the form ~(~) = a0R(~ + m/~), ~(~) = - AoR(mr + i/5). Solution 
of our problem is now complete. 

3. We now consider the problem for two holes. In this case we assume that the function 
z = m(~) effects a conformal and biunique mapping of the given multiply connected domain 
onto the exterior of cuts F = F I + F 2 (F~ = alb I, F 2 = a2b2), located on the real 0S-axis 
of the plane of the variable ~ = $ + iN. 

Then, following reasoning similar to that in Sec. 2, we can see that the solution of 
the stated problem has the form (al = - - b ~  bl = - -a~ a 2 = a, b 2 = b) 

(p (~) = aoCO (~), ,o (;) = y ~  + 2.% 

* (~) 2 + 2 
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Here R and c are arbitrary real constants; F and E are elliptic integrals of the first and 
second kind, respectively: 

d~ E ( ~ , k ) =  I ~1-k 2sin  ~ d ~ , ~  =arcsin ~ k a 
F ( % k ) =  V t - k  s s i ~  0 . , ~ ~, = ~ .  

N e x t ,  f o r  a c o m p a r i s o n  w i t h  t h e  l i n e a r  c l a s s i c a l  c a s e  we p u t ,  w i t h o u t  l o s s  o f  g e n e r -  
a l i t y ,  as = - 2 ,  b 1 = - 1 ,  as = 1,  b 2 = 2 .  T h e n ,  f o l l o w i n g  t h e  r e a s o n i n g  u s e d  i n  [ 2 ] ,  we 
d e t e r m i n e  t h e  c o n s t a n t  c ,  a n d  t h e n  a l s o  t h e  f o r m  o f  t h e  c o n t o u r s  i n  t h e  f o r m  

c = F ( ] /~ /2)  2,246, x = - -  R 0.23 + t . 23  ~- 

,( 
1 -  N t +  N 2E o, -- 

% 

To = arcs in  2 ' 

m : /90 = (PI - -  P2) (ff + Po + 4~) 2 (Pl  + 2~) (P2 + 2~) 

Ao (eo -- o) (Pl + Pz + 4~) 2 (~ +_2~) (P0,+ 2~)/ 

A c c o r d i n g  t o  t h e  l i n e a r  c l a s s i c a l  t h e o r y ,  m = (P2 - P 1 ) / ( o  - P 0 ) .  F i g u r e  1 shows  t h e  
g r a p h s  f o r  a f a m i l y  o f  c o n t o u r s  o f  h o l e s  o f  e q u a l  s t r e n g t h  f o r  v a r i o u s  v a l u e s  o f  m = b 0 / h 0  
( x  > 0 ,  y > 0 ) .  C u r v e s  1 t o  4 c o r r e s p o n d  t o  t h e  l i n e a r  c a s e  w i t h  mz = - 0 . 2 ;  - 0 . 4 ;  - 0 . 5 ;  
and  - 0 . 8 ,  w h i l e  c u r v e s  1 '  t o  4 '  a r e  f o r  t h e  n o n l i n e a r  c a s e  w i t h  m 2 = - 0 . 2 6 ;  - 0 . 5 0 ;  - 0 . 6 1 ;  
and  - 0 . 8 8 .  

A n a l y s i s  o f  t h e s e  c u r v e s  s h o w s  t h a t  t h e  c o n t o u r s  f o r  h o l e s  o f  e q u a l  s t r e n g t h ,  c o n -  
s t r u c t e d  i n  a c c o r d a n c e  w i t h  t h e  n o n l i n e a r  a n d  l i n e a r  t h e o r i e s ,  d i f f e r .  I n  some c a s e s  i n -  
v o l v i n g  elastic equilibrium this difference may prove to be significant. 
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